Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
J Acoust Soc Am ; 152(1): 9, 2022 07.
Article in English | MEDLINE | ID: covidwho-1949892

ABSTRACT

This paper describes ongoing developments to an advanced laboratory course at Kettering University, which is targeted to students in engineering and engineering physics and emphasizes theoretical, computational, and experimental components in the context of airborne acoustics and modal testing [cf. D. A. Russell and D. O. Ludwigsen, J. Acoust. Soc. Am. 131, 2515-2524 (2012)]. These developments have included a transition to electronic laboratory notebooks and cloud-based computing resources, incorporation of updated hardware and software, and creation and testing of a multiple-choice assessment instrument for the course. When Kettering University suddenly shifted to exclusively remote teaching in March 2020 due to the COVID-19 pandemic, many of these changes proved to be essential for enabling rapid adaptation to a situation in which a laboratory was not available for the course. Laboratory activities were rewritten by crowdsourcing archived data, videos were incorporated to illustrate dynamic phenomena, and computer simulations were used to retain student interactivity. The comparison of multiple measures, including the assessment instrument, team-based grades on project papers, and individual grades on final exams, indicates that most students were successful at learning the course material and adapting to work on team-based projects in the midst of challenging remote learning conditions.


Subject(s)
COVID-19 , Acoustics , COVID-19/epidemiology , Humans , Learning , Pandemics , Students , Teaching
SELECTION OF CITATIONS
SEARCH DETAIL